2,835 research outputs found

    Global Assimilation of Loon Stratospheric Balloon Observations and Their Trajectories Relative to Tropical Waves

    Get PDF
    Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. During May through December 2016 Loon balloons were often able to remain near the equator by selectively adjusting the Loon altitude. Our results based on global wind analyses show that the expected mean poleward motion from the Brewer-Dobson circulation can be circumvented by vertically adjusting the Loon altitudes with the phasing with the meridional wind of equatorial Rossby waves, allowing the Loon balloons to remain in the tropics

    RAMESES publication standards: realist syntheses

    Get PDF
    PMCID: PMC3558331This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Impacts of the Mount Pinatubo eruption on ENSO in the GEOS seasonal-to-subseasonal forecasting system

    Get PDF
    The eruption of Mount Pinatubo in June 1991 introduced a perturbation of the Earth's global energy budget by increasing the stratospheric aerosol loading by an order of magnitude, with effects on the global climate. In this presentation we analyze the effects of the Mt. Pinatubo eruption on the seasonal forecast performed with Goddard Earth Observing System Seasonal-to Subseasonal (GEOS-S2S) system, an Earth System Model that includes an interactive ocean and a bulk aerosol model coupled to radiation. We performed 10-member ensembles for the year after the eruption (June 1991-May 1992) at ~0.5 horizontal resolution, with and without the inclusion of the Mt. Pinatubo eruption. In GEOS-S2S, the eruption leads to ta strengthening of El Nino peaking in January 1992. The strengthening is mainly due to the weakening of the trade winds, which is caused by a attening of the temperature gradient across the Pacic due to a differential response to the volcanic forcing between the central and eastern Pacic (ocean-dynamical thermostat). This response largely depends on the assumed size for the volcanic aerosols. Indeed, we performed simulations assuming a volcanic aerosol effective radius of 0.35 m (similar to tropospheric aerosol, and the default in GEOS) and 0.6 m (closer to observations of volcanic aerosol from Pinatubo-sized eruptions). We nd that in the latter case the tropical radiative forcing is lower, since smaller aerosols scatter shortwave radiation more eciently than larger ones. Accordingly, the impact on ENSO is not statistically signicant when a larger and more realistic particle radius is assumed

    NASA's Carbon Monitoring System Flux-Pilot Project: A Multi-Component Analysis System for Carbon-Cycle Research and Monitoring

    Get PDF
    The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions

    An 8-Year, High-Resolution Reanalysis of Atmospheric CO2 Mixing Ratios Based on OCO-2 and GOSAT-ACOS Retrievals

    Get PDF
    The NASA GMAO (Global Modeling and Assimilation Office) reanalysis blends OCO-2 (Orbiting Carbon Observatory 2) and GOSAT-ACOS (Greenhouse Gases Observing Satellite-Atmospheric Carbon Observations from Space) retrievals (top) with GEOS (Goddard Earth Observing System) model predictions (bottom) to estimate the full 3D (three-dimensional) state of CO2 every 3 hours (middle). This poster describes monthly atmospheric growth rates derived from the reanalysis and an application to aircraft data with the potential to aid bias correction

    The Global Observing System in the Assimilation Context

    Get PDF
    Weather and climate analyses and predictions all rely on the global observing system. However, the observing system, whether atmosphere, ocean, or land surface, yields a diverse set of incomplete observations of the different components of Earth s environment. Data assimilation systems are essential to synthesize the wide diversity of in situ and remotely sensed observations into four-dimensional state estimates by combining the various observations with model-based estimates. Assimilation, or associated tools and products, are also useful in providing guidance for the evolution of the observing system of the future. This paper provides a brief overview of the global observing system and information gleaned through assimilation tools, and presents some evaluations of observing system gaps and issues

    Narrowing of the Upwelling Branch of the Brewer-Dobson Circulation and Hadley Cell in Chemistry-Climate Model Simulations of the 21st Century

    Get PDF
    Changes in the width of the upwelling branch of the Brewer-Dobson circulation and Hadley cell in the 21st Century are investigated using simulations from a coupled chemistry-climate model. In these model simulations the tropical upwelling region narrows in the troposphere and lower stratosphere. The narrowing of the Brewer-Dobson circulation is caused by an equatorward shift of Rossby wave critical latitudes and Eliassen-Palm flux convergence in the subtropical lower stratosphere. In the troposphere, the model projects an expansion of the Hadley cell's poleward boundary, but a narrowing of the Hadley rising branch. Model results suggest that the narrowing of the Hadley cell ascent is also eddy-driven

    Progress in Atmospheric Carbon Monitoring Using NASA's GEOS Model and Data from the OCO and GOSAT Missions

    Get PDF
    NASA's Global Modeling and Assimilation Office (GMAO) produces a variety of carbon products based the synthesis of satellite remote sensing data and outputs of the Goddard Earth Observing System (GEOS). This includes bottom-up surface fluxes due to fossil fuel emissions, biomass burning, terrestrial biospheric exchange, and ocean exchangeconstrained by measurements of nighttime lights, fire radiative power, normalized difference vegetation index, and ocean color. These fluxes are the basis of top-down estimates of carbon concentrations and fluxes. In particular, the GMAO system processes retrievals of column carbon dioxide (XCO2) from GOSAT and OCO-2 to produce a high-resolution, long-term global analysis of CO2 in three dimensions every 6 hours. Here, we discuss the potential applications of such products for satellite intercomparison and evaluation against independent, non-coincident data. We also highlight the ability to provide monthly global atmospheric growth rates inferred from the assimilated CO2 concentration product. Finally, we discuss the challenges facing such products including bias correction and the estimation and analysis of model transport errors

    Scoping studies: towards a methodological framework

    Get PDF
    This paper focuses on scoping studies, an approach to reviewing the literature which to date has received little attention in the research methods literature. We distinguish between different types of scoping studies and indicate where these stand in relation to full systematic reviews. We outline a framework for conducting a scoping study based on our recent experiences of reviewing the literature on services for carers for people with mental health problems. Where appropriate, our approach to scoping the field is contrasted with the procedures followed in systematic reviews. We emphasize how including a consultation exercise in this sort of study may enhance the results, making them more useful to policy makers, practitioners and service users. Finally, we consider the advantages and limitations of the approach and suggest that a wider debate is called for about the role of the scoping study in relation to other types of literature reviews
    corecore